機械学習

数値計算

関数の数値微分 – 中心差分

勾配法やニュートン法など、最適化計算では関数の微分、偏微分が必要になってきます。実装の時に微分、偏微分を手計算してコードを書くと使う関数ごとに異なる実装が必要になりますね。これを避けるために、数値計算で微分を行うことを検討します。 ...
数値計算

多変数の場合の勾配法をイメージで理解しよう

前回の1変数の勾配法を多変数の関数に適用する場合を考えます。内容は引き続き ”これなら分かる最適化数学, 金谷健一” から引用します。 多変数の勾配法の考え方 1変数の関数\(y=f(x)\)の場合、山を登るように\(x\)の...
数値計算

勾配法をイメージで理解する – 最大の数値を求める方法

数値解析で極値を求めるには、関数の増減を探索していく方法が基本です。この基本の方法として勾配法があります。この記事では勾配法のアルゴリズムをアニメーションで理解できるようにしています。勾配法を難しいと思っている方!勾配法は見ればイメージがつかめるものですよ!
タイトルとURLをコピーしました